LBNL-3820E-POSTER

ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

Greenhouse Gas Abatement with Distributed
Generation in California’s Commercial Buildings

Chris Marnay, Michael Stadler, Tim Lipman, Judy Lai,
Gongalo Cardoso, and Olivier Mégel

Environmental Energy
Technologies Division

poster presented at the 6™ Annual California Climate Change Research
Symposium Sacramento Convention Center, Sacramento, California,
September 8 - 10, 2009

http://eetd.Ibl.gov/EA/EMP/emp-pubs. html

The work described in this poster was funded by the California Energy
Commission, Public Interest Energy Research Program, under Work for Others
Contract No. 500-07-043, 500-99-013 and by the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.






Disclaimer

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither
the United States Government nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, makes any warranty, express or
implied, or assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof, or The Regents of
the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency
thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity
employer.






Greenhouse Gas Abatement with Distributed Generation in California’'s Commercial Buildings

Keywords: carbon emissions, climate change, combined heat and power, commercial buildings, distributed generation, microgrids
i 6 _E:D.l ﬁ ‘:-.L;: :Ir. ‘:..r.?
£ \ '-_:.I-'E.. :;:._: -

Motivation & Objective for this Research Distributed Energy Resources Customer Adoption Model (DER-CAM)

Project started: January 2009
Team: Chris Marnay, Michael Stadler, Tim Lipman, Judy Lai, Gongalo Ferreira Cardoso, Olivier Mégel

Project partner: University of California, Berkeley

to determine the role of distributed generation (DG) in greenhouse gas reductions DER-CAM optimization techniques find both the combination of equipment and its
by operation over a typical year that minimizes the site's total energy bill, including amortized
capital costs, or CO, emissions by considering

applying the Distributed Energy Resources Customer Adoption Model (DER-CAM)

; : : : . e « hourly load profiles for electric, heating, cooling, and natural gas loads
using the California Commercial End-Use Survey (CEUS) database for commercial buildings

s« any onsite technology that can be described by capital costs, O&M costs, efficiency,
etc.

considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat « building/ microgrid energy balance
utilization, solar thermal, and PV

selecting buildings with electric peak loads between 100 kW and 5 MW

s« operating constraints, e.g. solar radiation
testing of different policy instruments, e.g. feed-in tariff or investment subsidies

s« regulatory constraints, e.g. CO, prices / taxes or zero-net energy buildings

[generation, solar collection, & CHP)

Schematic of the Energy Flow in a Building - Global Concept High Level Schematic of DER-CAM
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California Commercial End-Use Survey (CEUS) database
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Result: Influence of a CO, Pricing Scheme

Carbon Price vs. CO, Reduction
S/t of carbon
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Result: Influence of Investment Incentives for Fuel Cells in 2020 ”
. . CHP, PV and solarthermal as
vast majority of adopted technologies are fuel cells options in DER-CAM
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